The kinetic equation for the chloride transport cycle of band 3. A 35Cl and 37Cl NMR study.

نویسندگان

  • J J Falke
  • K J Kanes
  • S I Chan
چکیده

The nature of a transmembrane transport process depends largely on the identity of the reaction that is rate-limiting in the transport cycle. The one-for-one exchange of two chloride ions across the red cell membrane by band 3 can be decomposed into two component reactions: 1) the binding and dissociation of chloride at the transport site, and 2) the translocation of bound chloride across the membrane. The present work utilizes 35 Cl NMR and 37 Cl NMR to set lower limits on the rates of chloride binding and dissociation at the saturated inward- and outward-facing band 3 transport sites (greater than or equal to 10(5) events site-1 s-1 in all cases). At both 0-3 and 37 degrees C, the NMR data specify that chloride binding and dissociation at the saturated transport sites are not rate-limiting, indicating that translocation of bound chloride across the membrane is the slowest step in the overall transport cycle. Using these results, it is now possible to describe many features of the kinetic equation for the ping-pong transport cycle of band 3. This transport cycle can be decomposed into two half-reactions associated with the transport of two chloride ions in opposite directions across the membrane, where each half-reaction is composed of sequential binding, translocation, and dissociation events. One half-reaction contains the rate-limiting translocation event that controls the turnover of the transport cycle; in this half-reaction, translocation must be slower than binding and dissociation. The other half-reaction contains the non-rate-limiting translocation event that in principle could be faster than binding or dissociation. However, when the following sufficient (but not necessary) condition is satisfied, both translocation events are slower than binding and dissociation: if the non-rate-limiting translocation rate is within a factor of 10(2) (0-3 degrees C) or 2 (37 degrees C) of the overall turnover rate, then translocation is rate-limiting in each saturated half-reaction. Thus, even though chloride appears to migrate through a channel that leads from the transport site to solution, the results support a picture in which the binding, dissociation, and channel migration events are rapid compared to the translocation of bound chloride across the membrane. In this case, chloride binding to the transport site can be described by a simple dissociation constant (KD = kappa OFF/kappa ON) rather than by a Michaelis-Menten constant (KM = (kappa OFF + kappa TRANSLOCATION)/KAPPA ON).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence that anion transport by band 3 proceeds via a ping-pong mechanism involving a single transport site. A 35 Cl NMR study.

Band 3 catalyzes the one-for-one exchange of monovalent anions across the red cell membrane. At least two anion binding sites have been postulated to exist on the transport unit: 1) a transport site that has been observed by saturation kinetics and by 35 Cl NMR studies of chloride binding, and 2) a 35Cl NMR-invisible inhibitory site that has been proposed to explain the inhibition of anion exch...

متن کامل

The minimal structure containing the band 3 anion transport site. A 35Cl NMR study.

35Cl NMR, which enables observation of chloride binding to the anion transport site on band 3, is used in the present study to determine the minimal structure containing the intact transport site. Removal of cytoskeletal and other nonintegral membrane proteins, or removal of the 40-kDa cytoskeletal domain of band 3, each leave the transport site intact. Similarly, cleavage of the 52-kDa transpo...

متن کامل

Major factors affecting the isotopic measurement of chlorine based on the Cs2Cl+ ion by thermal ionization mass spectrometry.

The factors that affect isotopic measurement of chlorine based on Cs2Cl+ ion by thermal ionization mass spectrometry were studied. Graphite is essential for the emission of Cs2Cl+ ion from CsCl. No Cs2Cl+ ions are detected in the absence of graphite on the filament. The emission of Cs2Cl+ ion and the measured 37Cl/35Cl ratio were affected by different varieties of graphite, the pH value of the ...

متن کامل

Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13C and 35/37Cl NMR relaxation study on model systems.

13C and 35/37Cl NMR relaxation measurements on several model systems demonstrate that the solvation of cellulose by the ionic liquid (IL) 1-n-butyl-3-methylimidazolium chloride ([C4mim]Cl) involves hydrogen-bonding between the carbohydrate hydroxyl protons and the IL chloride ions in a 1 ratio 1 stoichiometry.

متن کامل

Solid-state NMR spectroscopy of the quadrupolar halogens: chlorine-35/37, bromine-79/81, and iodine-127.

A thorough review of 35/37Cl, 79/81Br, and 127I solid-state nuclear magnetic resonance (SSNMR) data is presented. Isotropic chemical shifts (CS), quadrupolar coupling constants, and other available information on the magnitude and orientation of the CS and electric field gradient (EFG) tensors for chlorine, bromine, and iodine in diverse chemical compounds is tabulated on the basis of over 200 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 260 17  شماره 

صفحات  -

تاریخ انتشار 1985